首 页IT知识库收藏内容
当前位置:翔宇亭IT乐园IT知识库R语言

R中计算方差与标准差

减小字体 增大字体 作者:biye5u.com  来源:本站原创  发布时间:2018-08-02 22:25:07

1、概述

描述样本值的离散程度,最常用的指标是方差和标准差,它们与前面所说的全距(极差)只使用了两个极值情况不同,它们利用了样本的全部信息去描述数据取值的分散性。

2、计算方差的公式

方差是各样本相对均值的偏差平方和的平均。使用s2来表示,其公式如下:

计算方差的公式

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

3、计算标准差的公式

样本方差的开方称为样本标准差,记为s,其计算公式如下:

标准差越大,数据的离散程度越大,反之越小。但标准差与方差不同的地方是,标准差是有量纲的,它与变量值的计量单位相同,因此具有较强的实际意义,在实际应用较广泛。

R中计算方差与标准差的方法

4、R中计算方差与标准差

在R中使用var函数和sd函数分别计算方差和标准差。

var函数的语法形式如下:

var(x, y = NULL, na.rm = FALSE, use)

参数x是一个数值型向量矩阵数据框

参数y是与x维度相容的一个向量、矩阵或数据框,默认为NULL值;

na.rm为逻辑值,指示是否移除缺失值,默认为FALSE;

use是一个可选参数,是一个字符型字符串。用于指明在有缺失值时计算协方差的方法。只能是 "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"中值之一。

sd函数的语法形式如下:

sd(x, na.rm = FALSE)

各参数的含义与var函数对应的参数相同,但是x是一个数值型向量。

下面使用一个例子来说明具体使用方法。

设从某班某门课程中随机抽取了20个学生的成绩,具体如下:

51,99,65,100,68,84,72,85,78,64,69,95,90,75,66,50,63,55,64,70.

计算其方差和标准差。

编写R程序如下:

grade <- c(51,99,65,100,68,84,72,85,78,64,69,95,90,75,66,50,63,55,64,70)
ss <- var(grade)
s <- sd(grade)
print(ss)
print(s)

计算结果如下图所示:

即方差为:222.87,标准差为:14.93

R中计算方差与标准差的例子

本文为本站原创,如需转载,请保留本说明:R中计算方差与标准差翔宇亭IT乐园

微信搜索“优雅的代码”关注本站的公众号,或直接使用微信扫描下面二维码关注本站公众号,以获取最新内容。

个人成长离不开各位的关注,你的关注就是我继续前行的动力。

知识评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
愿您的精彩评论引起共鸣,带来思考和价值。
用户名: 查看更多评论
分 值:100分 90分 80分 70分 60分 40分 20分
内 容:
验证码:

相关文章

关于本站 | 网站帮助 | 广告合作 | 网站声明 | 友情连接 | 网站地图
本站部分内容来自互联网,如有侵权,请来信告之,谢谢!
Copyright © 2007-2024 biye5u.com. All Rights Reserved.